COMMUNITY DETECTION IN SIGNED SOCIAL NETWORKS USING VARIABLE LENGTH GENETIC ALGORITHM

PRESENTED BY:

Manisha Keim

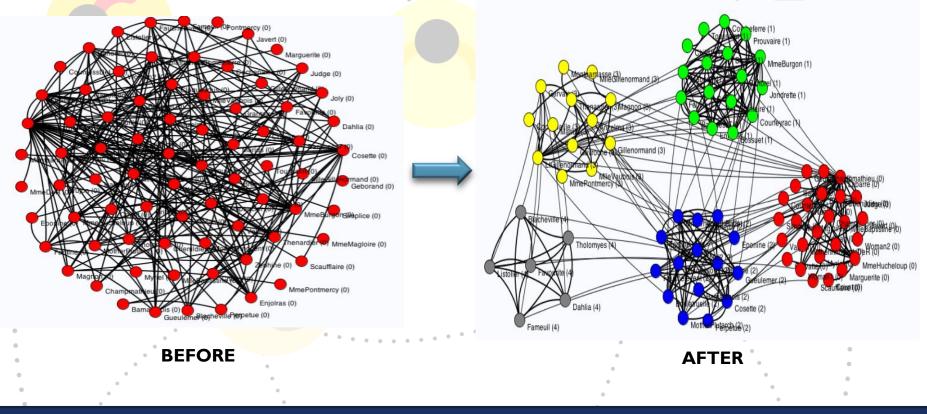
SUPERVISOR:

Dr. Vinti Agarwal

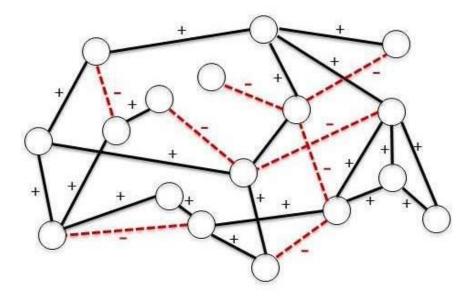
- Community Detection in Signed Networks
- Datasets : Extended Epinions, Slashdot
- Theories in Signed Networks
- Consensus Evaluation
- Variable Length Genetic Algorithm
- Proposed Work
- References

COMMUNITY DETECTION

 COMMUNITY DETECTION: The problem that community detection attempts to solve is the identification of groups of vertices that are more densely connected to each other than to the rest of the network.



SIGNED NETWORKS



Extended Epinions : Trust / Distrust Slashdot : Friend / foe

DATASETS : EXTENDED EPINIONS, SLASHDOT

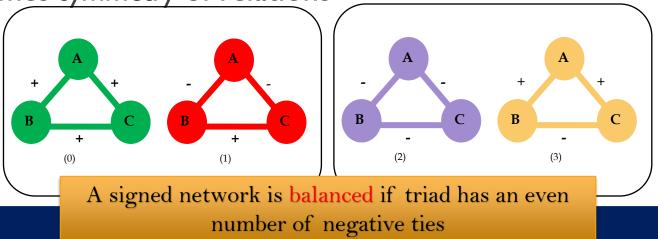
EXTENDED EPINION	SLASHDOT
Trust / Distrust	Friend / foe
~132,000 users and 841,372 statements	77,360 users and 905,468 edges
Directed	Directed
Users and Items are represented by anonimized numeric identifiers.	(u,v) : u's approval or disapproval of v's comments

THEORIES IN SIGNED NETWORK

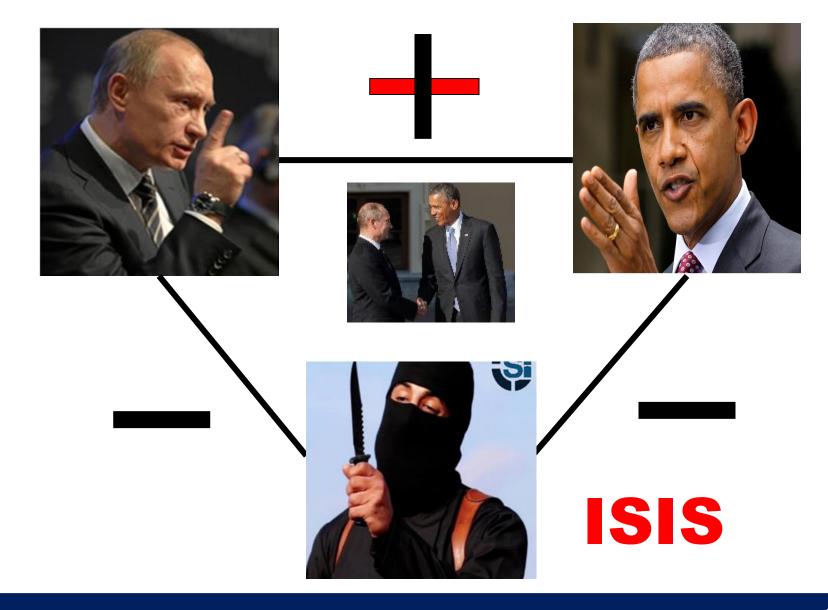
Social Balance Theory Social Status Theory

SOCIAL BALANCE THEORY

- Basic idea is that persons seek to avoid tension or dissonance in their relations.
- Works on
 - Triads (groups of three)
 - Assumes only positive (+) or negative (-) relations
 - Assumes symmetry of relations



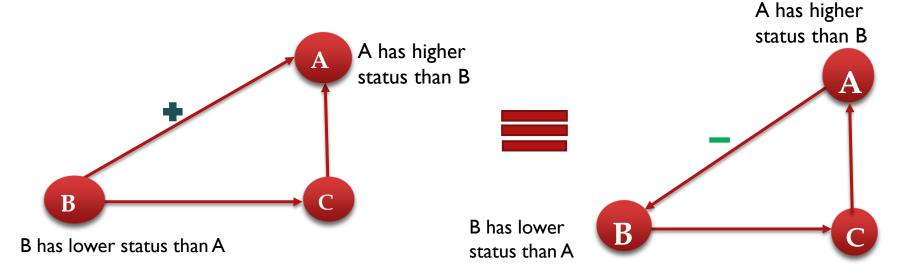
ISIS brings Putin, Obama **TOGETHER**



SOCIAL STATUS THEORY

Status theory [Leskovec et al.'10]

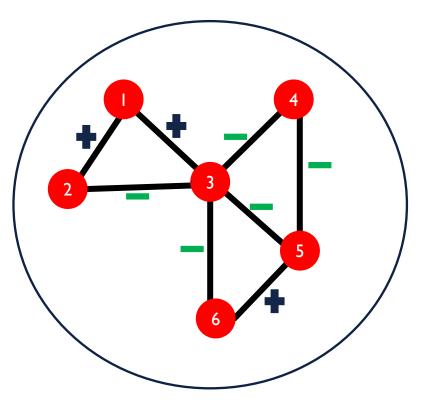
- Link $u \xrightarrow{+} v$ means: v has higher status than u
- Link $u \rightarrow v$ means: v has lower status than u



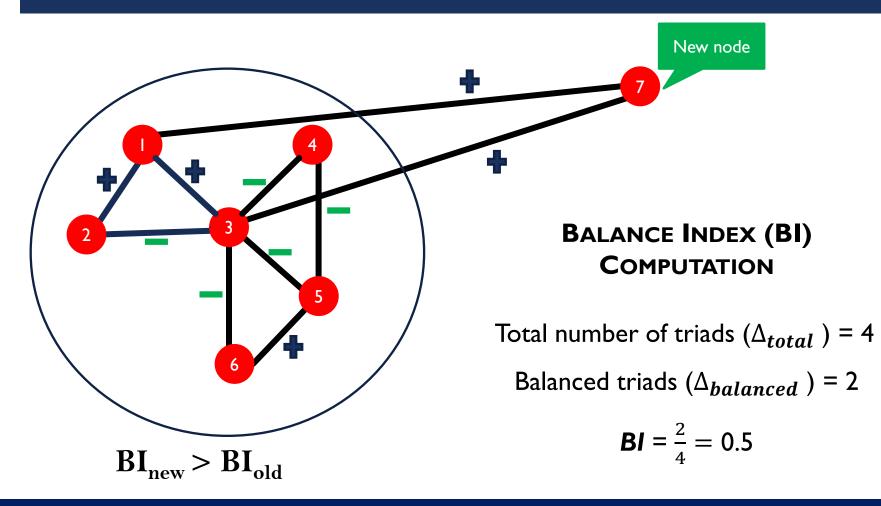
BALANCE INDEX(BI) COMPUTATION

Total number of triads $(\Delta_{total}) = 3$ Balanced triads $(\Delta_{balanced}) = 1$

BI =
$$\frac{1}{3}$$
 = 0.3333



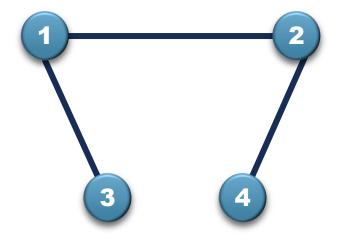
BALANCE INDEX(BI) COMPUTATION



CONSENSUS EVALUATION

- □ Fuzzy m-*ary* relations
 - Preference Relations
 - Fuzzy Binary Relations
- Trust/distrust relations
- Direction of edges.

BINARY ADJACENCY MATRIX



LIMITATIONS OF BINARY RELATIONS :

 \Box It can be used only to represent pair wise relations.

Degree of relationship can't be defined because it used only crisp values that is either 0 or I.

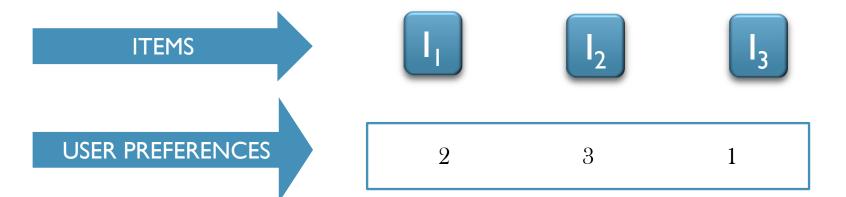
PREFERENCE RELATIONS

• A preference relation P on a set $I = \{i_1, ..., i_k\}$ is characterized by a function $\mu_P: I \times I \rightarrow [0, I]$, such that $\mu_P(i_q, i_q) = 0.5 \forall q$ and $\mu_P(i_q, i_r) + \mu_P(i_r, i_q) = 1 \forall q, r$.

$$\mu_{P}(i_{q}, i_{r}) \begin{cases} 1, & \text{if } i_{q} \text{ is definately preferred over } i_{r} \\ \alpha \in]0.5, 1[& \text{if } i_{q} \text{ is preferred over } i_{r} \\ 0.5, & \text{if there is indifference between } i_{q} \text{ and } i_{r} \\ \beta \in]0, 0.5[& \text{if } i_{r} \text{ is preferred over } i_{q} \\ 0, & \text{if } i_{r} \text{ is definately preferred over } i_{q} \end{cases}$$

PREFERENCE RELATIONS

Let us assume there are 3 items I_1 , I_2 , I_3 and users have given preferences on them.



 $\mu(I_1, I_2) =]0, 0.5[$

 $\mu(I_2, I_3) =]0.5, 1[$

EXAMPLE : FUZZY PREFERENCE RELATIONS

Let us assume there are 6 users $d_{1,} d_2, d_3, d_4, d_{5,} d_6$ who has given their preferences on 3 items I_1, I_2, I_3 .

$$\mathbf{P}^{(1)} = \begin{pmatrix} 0.5 & 0.9 & 1 \\ 0.1 & 0.5 & 0.6 \\ 0 & 0.4 & 0.5 \end{pmatrix} \quad \mathbf{P}^{(2)} = \begin{pmatrix} 0.5 & 0.8 & 1 \\ 0.2 & 0.5 & 0.5 \\ 0 & 0.5 & 0.5 \end{pmatrix}$$
$$\mathbf{P}^{(3)} = \begin{pmatrix} 0.5 & 0.9 & 0.9 \\ 0.1 & 0.5 & 0.6 \\ 0.1 & 0.4 & 0.5 \end{pmatrix} \quad \mathbf{P}^{(4)} = \begin{pmatrix} 0.5 & 1 & 0.7 \\ 0 & 0.5 & 0.7 \\ 0.3 & 0.3 & 0.5 \end{pmatrix}$$
$$\mathbf{P}^{(5)} = \begin{pmatrix} 0.5 & 0.1 & 0.1 \\ 0.9 & 0.5 & 0 \\ 0.9 & 1 & 0.5 \end{pmatrix} \quad \mathbf{P}^{(6)} = \begin{pmatrix} 0.5 & 0.5 & 0.6 \\ 0.5 & 0.5 & 0.9 \\ 0.4 & 0.1 & 0.5 \end{pmatrix}$$

FUZZY BINARY ADJACENCY RELATION

• A fuzzy binary relation R_2 representing the degree of relationship exist between d_i and d_j , is defined using the member function μ_{R_2} : $D \times D \rightarrow [0, 1]$ as:

$$\mu_{R_2}(d_i, d_j) = \begin{cases} 1, & \text{if } d_i \text{ is strongly connected with } d_j \\ \gamma \in]0, 1[\quad d_i \text{ is, to some extent, related with } d_j \\ 0, & \text{if } d_i \text{ is not related to } d_j \end{cases}$$
FORMULA
$$\mu_{R_2}(d_i, d_j) = 1 - \frac{2}{k(k-1)} \sum_{\substack{q,r=1 \\ q < r}}^k \left| P_{qr}^{(i)} - P_{qr}^{(j)} \right|$$

EXAMPLE : FUZZY BINARY ADJACENCY RELATIONS

The next step consists in deriving the degrees of pairwise adjacency, $1 \int_{1}^{3} |p(1) - p(2)| > 0.02$

. . . 🚍 . . .

$$\mu_{R_2}(d_1, d_2) = 1 - \frac{1}{3} \sum_{\substack{q,r=1\\q < r}} \left| p_{qr}^{(1)} - p_{qr}^{(2)} \right| \approx 0.93$$
$$\mu_{R_2}(d_1, d_3) = 1 - \frac{1}{3} \sum_{\substack{q,r=1\\q < r}}^3 \left| p_{qr}^{(1)} - p_{qr}^{(3)} \right| \approx 0.96$$

$$\begin{aligned} \mu_{R_2}(d_4, d_6) &= 1 - \frac{1}{3} \sum_{\substack{q,r=1\\q < r}}^3 \left| p_{qr}^{(4)} - p_{qr}^{(6)} \right| \approx 0.73 \\ \mu_{R_2}(d_5, d_6) &= 1 - \frac{1}{3} \sum_{\substack{q,r=1\\q < r}}^3 \left| p_{qr}^{(5)} - p_{qr}^{(5)} \right| \approx 0.4 \end{aligned}$$

EXAMPLE : FUZZY BINARY ADJACENCY RELATIONS

Such values of pairwise adjacency can be conveniently collected into the following matrix representing the fuzzy binary adjacency relation.

	(1	0.933	0.967	0.833	0.233	0.633	
	0.933	1	0.9	0.767	0.3	0.633	
$\mathbf{R} \approx$	0.967	0.9	0.967 0.9 1 0.866 0.267 0.667	0.866	0.267	0.667	
ĸ≈	0.833	0.767	0.866	1	0.267	0.73	ŀ
	0.233	0.3	0.267	0.267	1	0.4	
	0.633	0.633	0.667	0.73	0.4	1 /	

FUZZY M-ARY RELATIONS

A fuzzy *m*-ary relation *R_m* on the set *D* is defined by the membership function μ_{*R_m*}: *D^m*→ [0, 1],

$$\mu_{R_m}(d_{p_1}, \dots, d_{p_m}) = \begin{cases} 1, & if d_{p_1}, \dots, d_{p_m} \text{ are strongly} \\ related with each other \\ \gamma \in]0, 1[& if d_{p_1}, \dots, d_{p_m} are, to some \\ extent, related with each other \\ 0, & if d_{p_1}, \dots, d_{p_m} \text{ are definately} \\ not related with each other \end{cases}$$
ORMULA
$$\mu_{R_m}(d_{p_1}, \dots, d_{p_m}) = \frac{1}{\binom{m}{2}} (\mu_{R_2}(d_{p_1}, d_{p_2}) + \dots + \mu_{R_2}(d_{p_{m-1}}, d_{p_m}))$$

FUZZY M-ARY RELATIONS

$$\mu_{R_3}(d_1, d_2, d_3) = \frac{1}{3}\mu_{R_2}(d_1, d_2) + \frac{1}{3}\mu_{R_2}(d_1, d_3) + \frac{1}{3}\mu_{R_2}(d_2, d_3) \approx 0.93$$

$$\mu_{R_3}(d_3, d_5, d_6) = \frac{1}{3}\mu_{R_2}(d_3, d_5) + \frac{1}{3}\mu_{R_2}(d_3, d_6) + \frac{1}{3}\mu_{R_2}(d_5, d_6) \approx 0.4$$

Since $\mu_{R_3(d_3,d_5,d_6)} < \mu_{R_3(d_1,d_2,d_3)}$ Therefore, members of the group (d_1, d_2, d_3) are highly similar than the members of group (d_3, d_5, d_6)

GENETIC ALGORITHM - DEFINITION

"A method for moving from one population of "chromosomes" to a new population by using a kind of "natural selection" together with the genetics—inspired operators of crossover, mutation, and inversion".

- John Holland, 1975

"Genetic Algorithms are adaptive heuristic search algorithms based on the evolutionary ideas of natural selection and natural genetics".

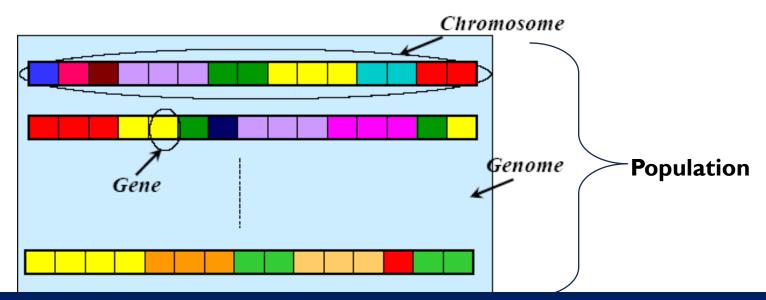
- David E. Goldberg, 1989

GENETIC ALGORITHM INCLUDES

- Chromosome
- Operators
- Objective Function
- Stopping Criteria

KEY TERMS

Chromosome : a chromosome (also sometimes called a genotype) is a set of parameters which define a proposed solution to the problem.



SELECTION

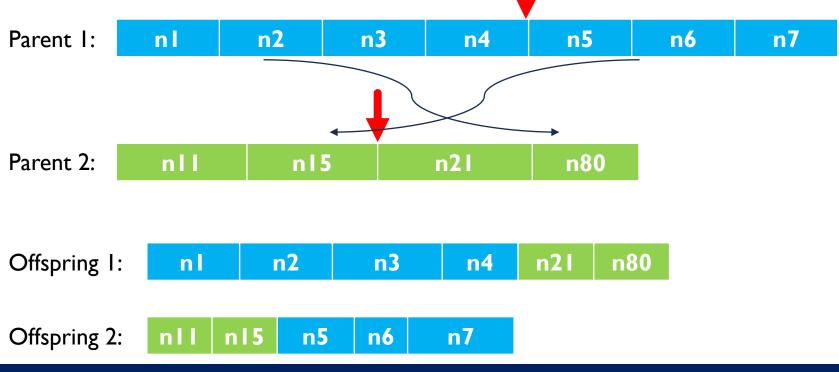
- Selection: replicates the most successful solution found in a population.
- Roulette-wheel Sampling, which is conceptually equivalent to giving each individual a slice of a circular roulette wheel equal in area to the individual's fitness. The roulette wheel is spun, the ball comes to rest on one wedge-shaped slice, and the corresponding individual is selected.



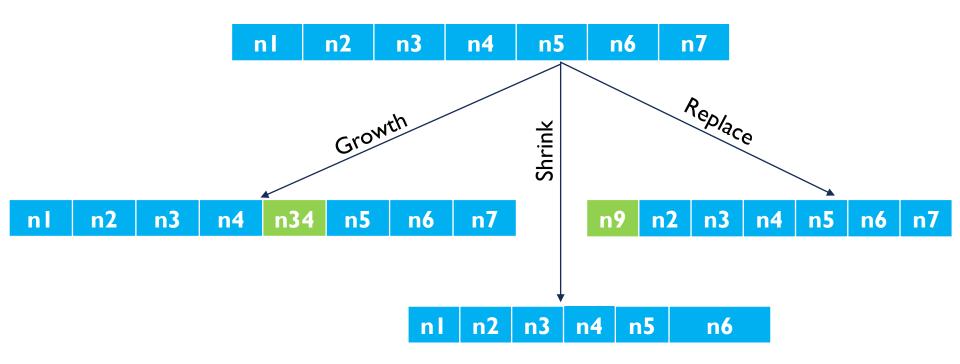
Chromosome 1 Chromosome 2 Chromosome 3 Chromosome 4

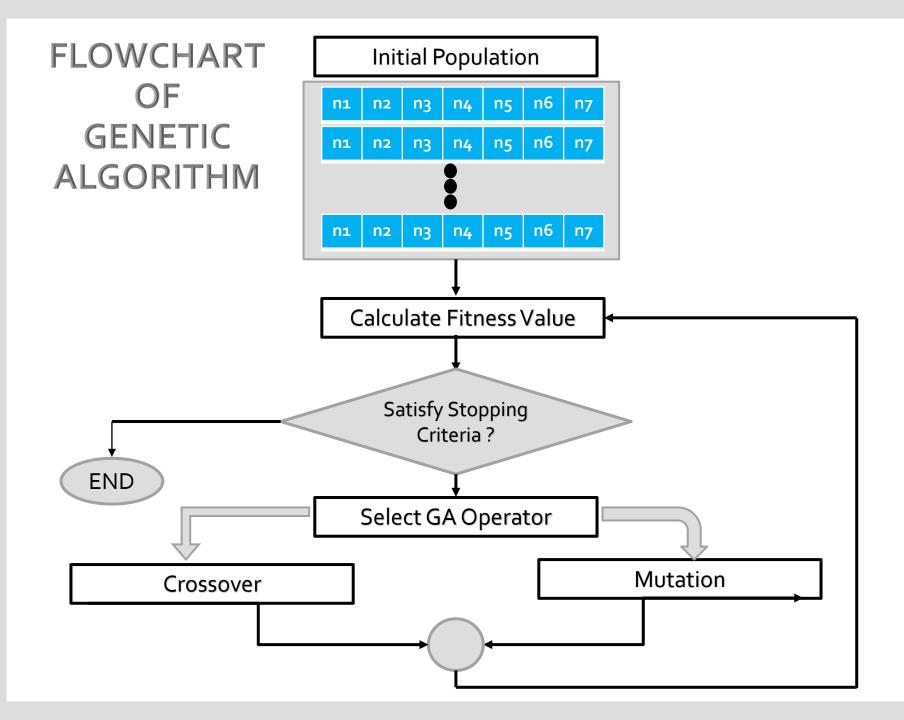
CROSSOVER

Crossover : decomposes two distinct solutions and then randomly mixes their parts to form new solutions



<u>Mutation</u>: randomly changes a candidate solution.





FITNESS FUNCTION

- Fitness function validates the diversion of process towards its optimization goal by allowing best individuals to breed that lead to good recommendation
- **Objective function** = $\frac{2 \times Consensus \times Balance Index}{Balance Index + Consensus}$
- We want high value of Consensus and Balance Index to get a high value of objective function.

STOPPING CRITERIA

- When a maximum number of generation elapsed or
- a desired level of fitness value is achieved.

PROPOSED WORK

- Community Detection in Signed Networks by modeling both positive and negative relationships among users using variable length genetic algorithm.
- By computing various social factors (i.e. balance index, social status) which helps in avoiding the possible imbalance arise in communities.
- Incorporate consensus building among a group of networked decision makers using *Fuzzy m-ary* relationships (Brunelli, et al., 2014).

REFERENCES

- J.Leskovec, D.Huttenlocher, J.Kleinberg, Predicting Positive and Negative Links in Online Social Networks, ACM CHI(2010 April).
- P.Esmailian and M.Jalili, Community Detection in Signed Networks : The role of negative ties in different scales.
- M.Brunelli, M.Fedrizzi and Mi.Fedrizzi, Fuzzy m-ary adjacency relations in social network analysis : Optimization and consensus evaluation.
- Patidar, A., Agarwal, V., Bharadwaj, K.K., Predicting Friends and Foes in Signed Networks using Inductive Inference and Social Balance Theory.
- Agarwal, V., Bharadwaj, K.K. (2015) Recommending Diverse Friends in Signed Social Networks based on Adaptive Soft Consensus Paradigm Utilizing Fuzzy m-ary Adjacency Relations.
- Lee, C.Y., Antonsson, E.K.: Variable Length Genomes for Evolutionary Algorithms. In L. Darrell Whitley; David E. Goldberg; Erick Cantú-Paz; Lee Spector; Ian C. Parmee& Hans-Georg Beyer, ed., 'GECCO', Morgan Kaufmann, , pp. 806 (2009)
- Kim, I.Y., de Weck, O.L.: Variable chromosome length genetic algorithm for progressive refinement in topology optimization. Struct. Multidisc. Optim. 29, 445–456 (2005).
- An Introduction to Genetic Algorithms, Melanie Mitchell, MIT Press, 1999

THANK YOU