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COMMUNITY DETECTION
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▪ COMMUNITY DETECTION: The problem that community

detection attempts to solve is the identification of groups

of vertices that are more densely connected to each

other than to the rest of the network.

BEFORE AFTER



SIGNED NETWORKS

Extended Epinions : Trust / Distrust

Slashdot : Friend / foe
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DATASETS : EXTENDED EPINIONS, SLASHDOT

EXTENDED EPINION SLASHDOT

Trust / Distrust Friend / foe

~132,000 users and 841,372 

statements 

77,360 users and 905,468 edges

Directed Directed

Users and Items are represented 

by anonimized numeric identifiers.

(u,v) : u’s approval or disapproval 

of v’s comments
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THEORIES IN SIGNED NETWORK



❑ Basic idea is that persons seek to avoid tension or

dissonance in their relations.

❑ Works on

 Triads (groups of three)

 Assumes only positive (+) or negative (-) relations

 Assumes symmetry of relations

SOCIAL BALANCE THEORY
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A signed network is balanced if  triad has an even 

number of  negative ties



ISIS brings Putin, Obama TOGETHER

ISIS
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SOCIAL STATUS THEORY

 Status theory [Leskovec et al. ‘10]

▪ Link u  v means: v has higher status than u

▪ Link u  v means: v has lower status than u

+

–
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BALANCE INDEX(BI) COMPUTATION

Total number of triads (∆𝒕𝒐𝒕𝒂𝒍 ) = 3   

Balanced triads (∆𝒃𝒂𝒍𝒂𝒏𝒄𝒆𝒅 ) = 1 

BI = 
1

3
= 0.3333
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BALANCE INDEX (BI) 

COMPUTATION

Total number of triads (∆𝒕𝒐𝒕𝒂𝒍 ) = 4  

Balanced triads (∆𝒃𝒂𝒍𝒂𝒏𝒄𝒆𝒅 ) = 2 

BI = 
2

4
= 0.5

BInew > BIold
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New node

BALANCE INDEX(BI) COMPUTATION
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CONSENSUS EVALUATION

❑ Fuzzy m-ary relations

 Preference Relations

 Fuzzy Binary Relations     

❑ Trust/distrust relations

❑ Direction of edges.
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BINARY ADJACENCY MATRIX

21

3 4
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LIMITATIONS OF BINARY RELATIONS :

❑It can be used only to represent pair wise relations.

❑Degree of relationship can’t be defined because it used only crisp 

values that is either 0 or1.
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PREFERENCE RELATIONS

 A preference relation 𝑃 on a set 𝛪 = {𝑖1, . . , 𝑖𝑘} is characterized by a 

function 𝜇𝑃: 𝛪 × 𝛪→[0,1], such that 𝜇𝑃 𝑖𝑞 , 𝑖𝑞 = 0.5 ∀𝑞 and 

𝜇𝑃 𝑖𝑞 , 𝑖𝑟 +𝜇𝑃 𝑖𝑟 , 𝑖𝑞 = 1 ∀𝑞, 𝑟. 

𝜇𝑃 𝑖𝑞 , 𝑖𝑟

1, 𝑖𝑓 𝑖𝑞 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑎𝑡𝑒𝑙𝑦 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑜𝑣𝑒𝑟 𝑖𝑟
⍺ ∊ 0.5, 1 𝑖𝑓 𝑖𝑞 𝑖𝑠 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑜𝑣𝑒𝑟 𝑖𝑟
0.5, 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑖𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖𝑞 𝑎𝑛𝑑 𝑖𝑟
𝛽 ∊ 0, 0.5 𝑖𝑓 𝑖𝑟 𝑖𝑠 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑜𝑣𝑒𝑟 𝑖𝑞
0, 𝑖𝑓 𝑖𝑟 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑎𝑡𝑒𝑙𝑦 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑜𝑣𝑒𝑟 𝑖𝑞
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PREFERENCE RELATIONS

I1 I2 I3

USER PREFERENCES 

𝜇 𝐼1, 𝐼2 =]0, 0.5[

𝜇 𝐼2, 𝐼3 =]0.5 , 1[

ITEMS

Let us assume there are 3 items I1, I2, I3 and users have given preferences on them. 

2 3 1
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EXAMPLE : FUZZY PREFERENCE RELATIONS

Let us assume there are 6 users d1, d2, d3, d4, d5, d6 who has given 

their preferences on 3 items I1, I2, I3. 
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FUZZY BINARY ADJACENCY RELATION

 A fuzzy binary relation 𝑅2 representing the degree of 

relationship exist between 𝑑𝑖 and 𝑑𝑗 , is defined using the 

member function 𝜇𝑅2: 𝐷 × 𝐷→ [0, 1] as:

𝜇𝑅2 𝑑𝑖 , 𝑑𝑗 =

1, 𝑖𝑓𝑑𝑖 𝑖𝑠 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑑𝑗
𝛾 ∊ 0, 1 𝑑𝑖 𝑖𝑠, 𝑡𝑜 𝑠𝑜𝑚𝑒 𝑒𝑥𝑡𝑒𝑛𝑡, 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑑𝑗
0, 𝑖𝑓𝑑𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜 𝑑𝑗

𝜇𝑅2 𝑑𝑖 , 𝑑𝑗 = 1 −
2

𝑘(𝑘 − 1)
෍
𝑞,𝑟=1
𝑞<𝑟

𝑘

𝑃𝑞𝑟
(𝑖)

− 𝑃𝑞𝑟
(𝑗)
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EXAMPLE : FUZZY BINARY ADJACENCY RELATIONS

The next step consists in deriving the degrees of pairwise 

adjacency, 
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EXAMPLE : FUZZY BINARY ADJACENCY RELATIONS

Such values of pairwise adjacency can be conveniently

collected into the following matrix representing the fuzzy

binary adjacency relation.
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FUZZY M-ARY RELATIONS

 A fuzzy 𝑚-ary relation 𝑅𝑚 on the set 𝐷 is defined by the 

membership function 𝜇𝑅𝑚: 𝐷
𝑚→ [0, 1],

𝜇𝑅𝑚 𝑑𝑝1 , … , 𝑑𝑝𝑚 =

1, 𝑖𝑓𝑑𝑝1 , … , 𝑑𝑝𝑚 𝑎𝑟𝑒 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦

𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑒𝑎𝑐ℎ 𝑜𝑡ℎ𝑒𝑟
𝛾 ∊ 0, 1 𝑖𝑓 𝑑𝑝1 , … , 𝑑𝑝𝑚𝑎𝑟𝑒, 𝑡𝑜 𝑠𝑜𝑚𝑒

𝑒𝑥𝑡𝑒𝑛𝑡, 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑒𝑎𝑐ℎ 𝑜𝑡ℎ𝑒𝑟
0, 𝑖𝑓𝑑𝑝1 , … , 𝑑𝑝𝑚 𝑎𝑟𝑒 𝑑𝑒𝑓𝑖𝑛𝑎𝑡𝑒𝑙𝑦

𝑛𝑜𝑡 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑒𝑎𝑐ℎ 𝑜𝑡ℎ𝑒𝑟

𝜇𝑅𝑚 𝑑𝑝1 , … , 𝑑𝑝𝑚 =
1
𝑚
2

(𝜇𝑅2 𝑑𝑝1 , 𝑑𝑝2 +⋯…… . . +𝜇𝑅2(𝑑𝑝𝑚−1
, 𝑑𝑝𝑚))
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FUZZY M-ARY RELATIONS

Since 𝜇𝑅3 𝑑3,𝑑5,𝑑6 < 𝜇𝑅3 𝑑1,𝑑2,𝑑3

Therefore, members of the group (d1, d2, d3) are highly similar than the 

members of group (d3, d5, d6)
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GENETIC ALGORITHM - DEFINITION

“A method for moving from one population of  
"chromosomes" to a new population by using a kind of  
"natural selection" together with the genetics−inspired 

operators of  crossover, mutation, and inversion”.

- John Holland, 1975

“Genetic Algorithms are adaptive heuristic search 
algorithms based on the evolutionary ideas of  natural 

selection and natural genetics”.

- David E. Goldberg, 1989
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GENETIC ALGORITHM INCLUDES

 Chromosome 

 Operators

 Objective Function

 Stopping Criteria 
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KEY TERMS

 Chromosome : a chromosome (also sometimes called a 

genotype) is a set of parameters which define a proposed 

solution to the problem.

Population
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SELECTION

 Selection: replicates the most successful solution found in a population.

 Roulette−wheel Sampling, which is conceptually equivalent to giving 

each individual a slice of a circular roulette wheel equal in area to the 

individual's fitness. The roulette wheel is spun, the ball comes to rest on 

one wedge−shaped slice,  and the corresponding individual is selected.
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CROSSOVER

n1 n2 n3 n4 n5 n6 n7

n11 n15 n21 n80

n1 n2 n3 n4 n21 n80

n11 n15 n5 n6 n7

Parent 1: 

Parent 2: 

Offspring 1: 

Offspring 2: 

Crossover : decomposes two distinct solutions and then

randomly mixes their parts to form new solutions
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MUTATION

n1 n2 n3 n4 n5 n6 n7

n1 n2 n3 n4 n34 n5 n6 n7 n9 n2 n3 n4 n5 n6 n7

n1 n2 n3 n4 n5 n6

Sh
ri

n
k

Mutation: randomly changes a candidate solution.
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Initial Population

n1 n2 n3 n4 n5 n6 n7

n1 n2 n3 n4 n5 n6 n7

n1 n2 n3 n4 n5 n6 n7

Select GA Operator

Satisfy Stopping 
Criteria ?

Crossover Mutation

END

Calculate Fitness Value



FITNESS FUNCTION

 Fitness function validates the diversion of process towards 
its optimization goal by allowing best individuals to breed 
that lead to good recommendation

 Objective function = 
2 × 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 ×𝐵𝑎𝑙𝑎𝑛𝑐𝑒 𝐼𝑛𝑑𝑒𝑥

𝐵𝑎𝑙𝑎𝑛𝑐𝑒 𝐼𝑛𝑑𝑒𝑥 + 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠

 We want high value of Consensus and Balance Index to get 
a high value of objective function. 
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STOPPING CRITERIA

 When a maximum number of generation 

elapsed or 

 a desired level of fitness value is achieved. 
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PROPOSED WORK

 Community Detection in Signed Networks by modeling

both positive and negative relationships among users using

variable length genetic algorithm.

 By computing various social factors (i.e. balance index, social

status) which helps in avoiding the possible imbalance arise

in communities.

 Incorporate consensus building among a group of

networked decision makers using Fuzzy m-ary relationships

(Brunelli, et al., 2014).
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